Simultaneous Linear Equations

Direct Method (Cramer's Rule):-

After reading this chapter, you should be able to:

1. solve a set of simultaneous linear equations using Cramer's Rule,
2. find the determinant of a matrix

How is a set of equations solved by using Cramer's Rule?

Cramer's Rule is another solution technique that is best suited to small numbers of equations.

Cramer's Rule consists of two steps

1. Determinant of the denominator: calculate the determinant of the coefficient matrix.
2. Determinant of the numerator: calculate the determinant by replacing the column of the unknown in question by the constants $b_{1}, b_{2}, \ldots, b_{n}$.

Determinant

The determinant can be illustrated for a set of three equations

$$
[A][X]=[B]
$$

Where [A] is the coefficient matrix

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

The determinant D of this system is formed from the coefficients of the equation as

$$
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|
$$

Although the determinant and the coefficient matrix [A] are composed of the same elements, they are completely different mathematical concepts. In contrast to a matrix, the determinant is a single number.

The numerical value for the determinant can be computed as

$$
D=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
$$

Where the 2 by 2 determinants are called minors.

Cramer's Rule

The rule states that each unknown in a of linear algebraic equations may be expressed as a fraction of two determinants with denominator D and with the numerator obtained from D by replacing the column of the unknown in question by the constants $b_{1}, b_{2}, \ldots, b_{n}$. The value of x_{1}, x_{2} and x_{3} will be computed as
$x_{1}=\frac{\left|\begin{array}{lll}b_{1} & a_{12} & a_{13} \\ b_{2} & a_{22} & a_{23} \\ b_{3} & a_{32} & a_{33}\end{array}\right|}{D}$

$x_{3}=\frac{\left|\begin{array}{lll}a_{11} & a_{12} & b_{1} \\ a_{21} & a_{22} & b_{2} \\ a_{31} & a_{32} & b_{3}\end{array}\right|}{D}$

Example 1

Use Cramer's rule to solve

$$
\begin{gathered}
0.3 x_{1}+0.52 x_{2}+x_{3}=-0.01 \\
0.5 x_{1}+x_{2}+1.9 x_{3}=0.67 \\
0.1 x_{1}+0.3 x_{2}+0.5 x_{3}=-0.44
\end{gathered}
$$

Solution

The determinant D can be written as

$$
D=\left|\begin{array}{ccc}
0.3 & 0.52 & 1 \\
0.5 & 1 & 1.9 \\
0.1 & 0.3 & 0.5
\end{array}\right|
$$

The minors are

$$
\begin{aligned}
d_{1} & =\left|\begin{array}{cc}
1 & 1.9 \\
0.3 & 0.5
\end{array}\right|=1 * 0.5-1.9 * 0.3=-0.07 \\
d_{2} & =\left|\begin{array}{cc}
0.5 & 1.9 \\
0.1 & 0.5
\end{array}\right|=0.5 * 0.5-1.9 * 0.1=0.06 \\
d_{3} & =\left|\begin{array}{cc}
0.5 & 1 \\
0.1 & 0.3
\end{array}\right|=0.5 * 0.3-1 * 0.1=0.05
\end{aligned}
$$

These minors will be used to calculate the determinant D

$$
D=0.3 *-0.07-0.52 * 0.06+1 * 0.05=-0.0022
$$

Now calculate the value of x_{1}

$$
x_{1}=\frac{\left|\begin{array}{ccc}
-0.01 & 0.52 & 1 \\
0.67 & 1 & 1.9 \\
-0.044 & 0.3 & 0.5
\end{array}\right|}{-0.0022}=\frac{0.03278}{-0.0022}=-14.9
$$

Now calculate the value of x_{2}

$$
x_{2}=\frac{\left|\begin{array}{ccc}
0.3 & -0.01 & 1 \\
0.5 & 0.67 & 1.9 \\
0.1 & -0.44 & 0.5
\end{array}\right|}{-0.0022}=\frac{0.0649}{-0.0022}=-29.5
$$

Now calculate the value of x_{3}

$$
x_{3}=\frac{\left|\begin{array}{ccc}
0.3 & 0.52 & -0.01 \\
0.5 & 1 & 0.67 \\
-0.1 & 0.3 & -0.44
\end{array}\right|}{-0.0022}=\frac{-0.04356}{-0.0022}=19.8
$$

